52nd Gaseous Electronics Conference Old Dominion University, Norfolk, VA October 5-8, 1999

Abstract of Invited Presentation

Ultralow Energy Electron Attachment at Sub-Millielectron Volt Resolution.

A. CHUTJIAN, Jet Propulsion Laboratory, California Institute of Technology

The technique of rare-gas photoionization 1 has been extended 2 by use of direct laser ionization to electron energies ϵ in the range 0-100 meV, with a resolution $\Delta\epsilon$ of 0.4-0.5 meV (FWHM). Tunable UV light at λ 276 nm is produced using a pulsed Nd:YAG laser and nonlinear mixing techniques. The beam is frequency tripled in a pulsed jet of xenon. The VUV radiation, tunable at λ 92 nm, is then used to photoionize Xe at its $^2P_{1/2}$ threshold (single-photon ionization). The photoelectrons produced interact with admixed target gas to generate negative ions through the s-wave capture process. Recent results in electron attachment to SF₆ will be reported which show resonance structure at the opening of the ground-state vibrational channels 2,3 . This structure corresponds to the process of vibrational excitation + attachment, which is superimposed on the underlying s-wave (direct) capture process. It should be a general phenomenon, present in a wide variety of zero-energy electron attaching molecules.

^{*} In collaboration with A. Kortyna, M. R. Darrach and P-T. Howe. This work was carried out at JPL/Caltech, and was supported through the NSF AMOP Program through agreement with NASA.

¹ J. M. Ajello and A. Chutjian, J. Chem. Phys. 65, 5524 (1976).

² A. Kortyna, M. Darrach and A. Chutjian, Bull. Am. Phys. Soc. 43, 1336 (1998).

³ H. Hotop et al., AIP Conf. Proc. Ser. 360 (AIP, New York, 1995), and private communication.